Synthesis of Caged Nucleosides with Photoremovable Protecting Groups Linked to Intramolecular Antennae by Joulia Smirnova, Dominik Wöll, Wolfgang Pfleiderer, and Ulrich E. Steiner* Fachbereich Chemie, Universität Konstanz, Postfach 5560, D-78457 Konstanz (e-mail: ulrich.steiner@uni-konstanz.de) Based on the [2-(2-nitrophenyl)propoxy]carbonyl (nppoc) group, six new photolabile protecting groups (2, 8, 9b, 16b, 25b, and 26), each covalently linked to a 9*H*-thioxanthen-9-one (Tx) unit functioning as an intramolecular triplet sensitizer, were synthesized. Linkers were introduced between the Me group or the aromatic ring of nppoc and the 2-position of Tx by means of classical organic synthesis combined with Pd catalyzed C-C coupling reactions. The new photolabile protecting groups to be used in light-directed synthesis of DNA chips were attached to the 5'-O-atom of thymidine *via* a carbonate linkage, giving rise to the caged nucleosides 7, 11, 13, 19, 20, and 30. **Introduction.** – Light-directed, massive parallel combinatorial synthesis with photoremovable protecting groups allows the fabrication of high-density DNA chips [1][2], *i.e.*, arrays of up to 1 million spots of different oligonucleotides on an area of *ca*. 1 cm². Such high-density DNA chips represent highly effective diagnostic tools for a variety of genomic applications such as genotyping [3], gene-expression profiling [4], and sequencing by hybridization [5]. Several reviews on DNA chips and their application have been published [6–12]. The efficiency of the photolithographic technique for producing high-density DNA chips critically depends on the performance, i.e., the light sensitivity and the uniformity of the photochemical cleavage reaction of the photolabile protecting groups blocking either the terminal 5'-OH or the 3'-OH group in the growing oligonucleotides. Among the photolabile protecting groups currently in use for photolithographic DNA-chip synthesis [13], the [2-(2-nitrophenyl)propoxy]carbonyl (nppoc) group (1) developed by *Pfleiderer* and co-workers is a prominent example [14][15]. It reacts in excellent yield and gives rise to a good quantum yield, the only draw-back for a higher light sensitivity being its low absorption coefficient in the near UV, where illumination is usually performed with the 366-nm Hg line. It has been shown that this problem can be overcome by triplet sensitization, e.g., with 9H-thioxanthen-9-one ('thioxanthone'), which has a high absorption coefficient at 366 nm and, on diffusional encounters, transfers its triplet energy to the photoreactive nitrobenzyl chromophore [16]. In O₂free solution, the rate of photodeprotection of nppoc-protected thymidine is enhanced by a factor of ca. ten, when thioxanthone is added as a sensitizer. However, since intermolecular energy transfer is rate-limited by diffusion, in the presence of O₂, the sensitizer is mostly quenched, and the enhancement of the photoreactivity is only weak or even absent. To avoid the diffusional step in energy transfer, we synthesized new protecting groups that utilize the sensitization principle, but with *intramolecular* energy transfer from a covalently linked sensitizer group to the photoreactive chromophore. The structure of nppoc (1) allows the attachment of a thioxanthone (Tx) moiety to the aliphatic chain of the protecting group, or directly to the aromatic ring. In this paper we present strategies for the synthesis of several *intramolecularly* sensitized protecting groups, as well as the synthesis of 5'-O-caged thymidines derived from them. The photochemical and photophysical properties of these new protecting groups will be published elsewhere. **Results and Discussion.** – 1. Linkage of the Thioxanthone Moiety to the Aliphatic Chain of nppoc. In linking the sensitizer to the photolabile protecting group, we tried to avoid adverse effects on the reactivity of the photoreactive group that might result from the structural change associated with the substitution of the linker. It has been established that the primary photoreaction of nppoc consists in an intramolecular Hatom transfer from the benzylic CH to the NO_2 group. Hence, the H-acceptor ability of the photo-excited NO_2 group and the H-donor ability of the benzylic CH group are relevant. Connecting the linker to the Me group of nppoc should neither have significant effect on the electronic system involved in the photoactive $n\pi^*$ -state, nor should the extension of the side chain at the benzylic C-atom by another saturated C-C unit substantially reduce the H-donor activity of the benzylic C-H bond. Three C_3 linkages (propyne-1,3-diyl, propene-1,3-diyl, and propane-1,3-diyl) and one C_2 linkage (ethane-1,2-diyl) were realized in this work. Our approach to the protecting group with a triple bond in the aliphatic C_3 linkage between the basic nppoc group **1** and the Tx residue is shown in *Scheme 1*. The synthesis of **2** started with the alkylation of methyl 2-nitrophenylacetate (**3**) with propargyl bromide in the presence of *t*-BuOK to give the pent-4-ynoate **4** in 48% yield. Reduction of **4** with NaBH₄ following the method of *Soai* and co-workers [17] proceeded smoothly, and allowed us to obtain the alcohol **5** in 78% yield. Coupling of **5** with 2-bromo-9*H*-thioxanthen-9-one (**6**) under classical *Sonogashira* conditions [18] provided the desired protecting group **2** in 31% yield. The caged thymidine **7** was derived from **2** according to [14]. Compound **2** was treated with phospene, and the resulting chloroformate was allowed to react with thymidine, which afforded the 5'-O-protected derivative **7**. The overall yield of the reaction was quite low (15%) due to some side reactions. For the synthesis of the protecting groups **8** and **9b** with C=C and C-C bonds, respectively, in the C_3 linkage, we developed a synthetic strategy that allowed us to use the same precursor **10** for the synthesis of both compounds (Scheme 2). The key step to the protected thymidine **11**, bearing a C=C bond in the Tx-based linkage, was a *Heck* reaction of the allylic alcohol **10** with 2-iodo-9*H*-thioxanthen-9-one (**12**) [19] [20]. For the analogue **13**, a hydroboration – *Suzuki* coupling sequence between the same ### Scheme 1 a) t-BuOK, HC \equiv CCH $_2$ Br, THF; $-80^{\circ} \rightarrow$ r.t., 12 h; 48%. b) NaBH $_4$, t-BuOH, MeOH, 80° , 4 h; 78%. c) 1. CuI, [Pd(PPh $_3$) $_4$], Et $_3$ N, THF; 2. **5**, r.t., 20 h; 31%. d) 1. 20% soln. of phosgene in toluene, THF, r.t., 14 h; 2. thymidine, pyridine, CH $_2$ Cl $_2$, $-40^{\circ} \rightarrow 0^{\circ}$, 4 h, r.t. 48 h; 15%. starting compounds was the main step. Precursor 10 was prepared in 93% yield by reduction of the ester 14 [21] with NaBH₄ in THF/MeOH [22] (initial attempts to use t-BuOH/MeOH, analogous to $4 \rightarrow 5$, led to 10 in less then 20% yield). The *Heck* reaction [23] [24] between 10 and 12 in the presence of a catalytic amount of [Pd(OAc)₂], Bu₃P, and K₂CO₃ in DMF afforded the adduct 8 in 24% yield. Several attempts have been made at improving the yield of the *Heck* coupling reaction, but any variations in the catalytic system, solvents, and reaction time [23–25] did not increase the yield. The *Heck* coupling product 8 was also prepared from the silyl-protected alcohol 15, made from 14, employing the same conditions as for the unprotected form 10 [26] [27]. Deblocking of the OH group of 15 with Bu₄NF in THF [26] gave the alcohol 8 in an overall yield of 42% from 10. The caged thymidine 11 was finally derived from 8 by treatment with phosgene, and reaction of the chloroformate with thymidine (34% yield) [14]. For the synthesis of **13**, the silyl ether **15** was subjected to hydroboration with 9-BBN (=9-borabicyclo[3.3.1]nonane), followed by *Suzuki* coupling [28][29] with 2-bromothioxanthone **6** in the presence of [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) ([Pd(dppf)Cl₂]) and 3M aq. K_3PO_4 to afford the silyl-protected alcohol **9a**. Deprotection of the *t*-BuMe₂Si group [26] led to the free alcohol **9b** in 47% yield (two steps). Treatment of **9b** with trichloromethyl chloroformate (diphosgene) in the presence of Et₃N [14][30][31], followed by reaction of the resulting chloroformate with thymidine, resulted in the formation of **13** in 58% yield. a) NaBH₄, THF, MeOH, r.t., 3 h; 81%. b) t-BuMe₂SiCl, imidazole, CH₂Cl₂, $0^{\circ} \rightarrow r.t.$, 12 h; 98%. c) **12**, [Pd(OAc)₂], Bu₃P, K₂CO₃, DMF, 100°, 3 h; 24%. d) **12**, [Pd(OAc)₂], Bu₃P, K₂CO₃, DMF, 100°, 3 h. e) Bu₄NF, THF, $0^{\circ} \rightarrow r.t.$, 18 h; 43% (2 steps). f) 1. 20% soln. of phosgene in toluene, THF, $0^{\circ} \rightarrow r.t.$, 12 h; 2. thymidine, pyridine, CH₂Cl₂, $0^{\circ} \rightarrow r.t.$, 12 h; 34%. g) 1. 9-BBN, THF, r.t., 3 h; 2. **12**, [Pd(dppf)Cl₂], 3M aq. K₃PO₄, DMF, 100°, 2 h. h) Bu₄NF, THF, $0^{\circ} \rightarrow r.t.$, 17 h, 47% (2 steps). i) 1. Diphosgene, Et₃N, THF, $0^{\circ} \rightarrow r.t.$, 4 h, 2. thymidine, pyridine, CH₂Cl₂, 0° , 48 h; 58%. For the synthesis of the protecting group **16b** with a saturated C_2 linkage, we followed the same synthetic strategy based on the hydroboration–Suzuki coupling tandem reaction, as used for the synthesis of **9b**. To follow this synthetic approach, the silyl-protected form **17b** of the alcohol **17a** was required as key intermediate. The synthesis of **16b** started from 1-allyl-2-nitro-benzene (**18**), which was prepared according to Sapountzis and Knochel [32]. Compound **18** was treated with paraformaldehyde in the presence of t-BuOK [30] to give the alcohol **17a** in 86% yield. Protection of the OH group with t-BuMe₂SiCl [26] [27] afforded the silyl ether **17b** quantitatively. The position of the olefinic C=C bond in compounds **17** was verified by 1 H-NMR analysis, and was in agreement with literature data [33]. Hydroboration of **17b** with 2 equiv. of 9-BBN proceeded smoothly [28][29]. The organoborane intermediate, when subjected to *Suzuki* coupling with **12**, afforded the Scheme 3 OR OR OR $$NO_2$$ NO_2 *a*) Paraformaldehyde, *t*-BuOK, DMSO, r.t., 2 h; 86%. *b*) *t*-BuMe₂SiCl, imidazole, CH₂Cl₂, 0° → r.t., 18 h; 100%. *c*) 1. 9-BBN, THF, r.t., 2 h, 2. **12**, [Pd(dppf)Cl₂], 3м aq. K₃PO₄, DMF, 100°, 2.5 h. *d*) Bu₄NF, THF, 0° → r.t., 18 h, 51%. *e*) 1. Diphosgene, Et₃N, THF, 0°, 2 h; 2. thymidine, pyridine, CH₂Cl₂, 0°, 20 h, 69%. desired silyl-protected alcohol **16a**. The cleavage of the protecting group with Bu_4NF in THF led to the alcohol **16b** in two steps, in an overall yield of 51%. The caged thymidine **19** was finally derived from **16b** in 69% yield by the method described above for compound **13**. 2. Linkage of the Thioxanthone Moiety to the Aromatic Ring of nppoc. Two synthetic pathways were developed for new protecting groups with a Tx residue linked to the aromatic ring of 1. In the first one, the protecting group was connected to the Tx moiety through an ester linkage (*Scheme 4*). In the second, Tx was directly attached to the aromatic ring of 1 (*Scheme 5*). The synthesis of the 5'-O-caged thymidine **20**, with the ester linkage at the aromatic ring of the nppoc moiety, is outlined in *Scheme 4*. The nitrobenzoic acid **21a** was conveniently prepared from the known benzoic acid **22a** [34], which was converted to the *t*-Bu ester **22b** by DCC (= *N*,*N*-dicyclohexylcarbodiimide)-mediated esterification [35]. Treatment of **22b** with paraformaldehyde and *t*-BuOK afforded the alcohol **23**, which was converted to the 2-(methoxyethoxy)methyl (MEM) ether **21a** in 85% yield by treatment with MEMCl in the presence of *Hünig* base under standard conditions [36–38]. The *t*-Bu protecting group of **21a** was smoothly cleaved under basic conditions (NaH, DMF) [39], without formation of any side products, to yield the desired benzoic acid derivative **21b** in 94% yield. Attempts to remove the *t*-Bu group by the widely used acidolysis with anhydrous CF₃COOH (TFA) were unsuccessful because of partial or complete cleavage of the MEM ether, contrary to literature data [40]. Reaction between 2-hydroxythioxanthene-9*H*-one (**24**) [41] and **21b** in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDCI) and *N*,*N*-dimethylpyridin-4-amine (DMAP) [42–44] resulted in the formation of aromatic ester **25a** *a*) *t*-BuOH, DCC, DMAP, CH₂Cl₂, r.t., 3 h; 96%. *b*) Paraformaldehyde, *t*-BuOK, DMSO, r.t., 1 h; 100%. *c*) MEMCl, Et(i-Pr)₂N, CH₂Cl₂, r.t., 21 h; 85%. *d*) NaH, DMF, r.t., 1 h; 94%. *e*) **24**, EDCI, DMAP, CH₂Cl₂, r.t., 24 h; 64%. *f*) 3м aq. HCl, THF, 75°, 5 h; 66%. *g*) 1. Diphosgene, THF, 0° → r.t., 4 h; 2. thymidine, pyridine, CH₂Cl₂, 0°, 18 h; 58%. in 64% yield. The MEM protecting group was removed with 3m aqueous HCl in THF under reflux [45] [46] to yield the alcohol **25b**. Reaction with diphosgene, and reaction of the resulting chloroformate with thymidine, analogous to the method described above, proceeded in 58% yield. The protective group **26**, bearing the Tx moiety directly linked to the aromatic ring of the nppoc chromophore, was synthesized by *Suzuki – Miyaura* reaction [47] between **6** and 2-(5-bromo-2-nitrophenyl)propan-1-ol (**27**), which was prepared according to [30]. Cross-coupling to **26** could be achieved by a one-pot procedure avoiding separation and purification of the intermediate **28**. First, the dioxaborolan **28** was prepared *in situ* from **6** in dioxane using [Pd(dppf)₂] (3 mol-%) and AcOK (3 equiv.) in the presence of the bis(pinacolate)diborane **29**. Subsequent reaction of **28** with **27** in the presence of a new portion of [Pd(dppf)₂] (3 mol%) and 3M aqueous K₃PO₄ (3 equiv.) led to the target compound **26** in 77% yield. By comparison, the traditional method involving isolation of **28** and reacting it, in a separate step, with **27** in THF led to **26** in only 39% overall yield. The caged thymidine **30** was finally derived from **26** in 59% yield by treatment with phosgene, followed by reaction of the resulting chloroformate with thymidine, as described above. ## Scheme 5 a) AcOK, [Pd(dppf)₂], 1,4-dioxane, 70°, 16 h. b) **27**, [Pd(dppf)₂], 3m aq. K_3PO_4 , 70°, 20 h, 77% (2 steps). c) 1. 20% soln. of phosgene in toluene, THF, r.t., 14 h; 2. thymidine, pyridine, $-40^{\circ} \rightarrow 0^{\circ}$ for 4 h, then r.t. for 48 h; 59%. **Conclusions.** – We have developed synthetic methods for several new photolabile protecting groups wherein a thioxanthone moiety is covalently linked at different positions to the photolabile nppoc moiety **1**. In general, the methods are based on Pdcatalyzed cross-coupling reactions. To the best of our knowledge, these are the first such reactions with halogenated thioxanthones. ## **Experimental Part** All reactions with moisture-sensitive reagents were performed in dry, N_2 -flushed glassware. THF was dried over Na/benzophenone. DMF was stored over 4-Å molecular sieves under N_2 . Silica gel 60 (203–400 mesh; Merck) was used for flash chromatography (FC) and column chromatography (CC). Thin-layer chromatography (TLC) was performed on precoated silica gel 60 F_{254} plates (Merck), detection by UV light at 254 nm. Melting points (m.p.) were determined with a $B\ddot{u}chi$ B-545 apparatus in open glass capillaries; uncorrected. Elemental analyses were carried out by the Microanalytical Laboratory of the Department of Chemistry at the University of Konstanz. *Methyl 2-(2-Nitrophenyl)pent-4-ynoate* (**4**). *t*-BuOK (1.85 g, 16.5 mmol) was added to a stirred soln. of **3** [48] (3.21 g, 16.4 mmol) and propargyl bromide (1.3 ml, 17.2 mmol) in THF (20 ml) at -80° . The cooling bath was removed, and stirring was continued for 12 h. After quenching with H₂O (30 ml), the mixture was extracted with Et₂O (3 × 30 ml), the combined org. phase was washed with H₂O (30 ml), dried (MgSO₄), and evaporated. The residue was purified by FC (AcOEt/hexane 0:100 → 25:75) to give **4** (1.84 g, 48%). Orange oil. ¹H-NMR (400 MHz, CDCl₃): 7.98 (*dd*, J = 8.2, 1.4, H−C(3')); 7.61 (*td*, J = 7.6, 1.2, H−C(5')); 7.53 (*dd*, J = 7.8, 1.5, H−C(6')); 7.46 (*td*, J = 7.7, 1.5, H−C(4')); 4.45 (*dd*, J = 8.3, 6.4, H−C(2)); 3.69 (*s*, Me); 3.03 (*ddd*, J = 17.0, 6.2, 2.7, 1 H of CH₂); 2.85 (*ddd*, J = 17.0, 8.3, 2.7, 1 H of CH₂); 1.95 (*t*, J = 2.5, 1 H, ≡CH). 2-(2-Nitrophenyl)pent-4-yn-1-ol (5). NaBH₄ (525 mg, 13.9 mmol) was added to a stirred soln. of **4** (1.84 g, 78.9 mmol) in t-BuOH (25 ml). The suspension was heated to 80°, MeOH (3.4 ml, 83.9 mmol) was added dropwise over a period of 4 h, and heating was continued for 1 h. After cooling to r.t. and quenching with $\rm H_2O$ (30 ml), the product was extracted with $\rm Et_2O$ (3 × 30 ml), the combined org. phase was washed with sat. aq. NH₄Cl soln. (30 ml), dried (MgSO₄), and evaporated to give pure **5** (1.26 g, 78%). Viscous, red oil. 1 H-NMR (400 MHz, CDCl₃): 7.80 (d, J = 7.6, H – C(3')); 7.61 – 7.55 (m, 2 arom. H); 7.42 – 7.37 (m, arom. H); 4.03 – 3.95 (m, OCH₂); 3.63 (quint., H – C(2)); 2.72 (ddd, J = 17.1, 6.8, 2.7, H_a – C(3)); 2.67 (ddd, J = 16.8, 7.0, 2.7, H_b – C(3)); 1.98 (t, J = 2.5, \equiv CH). 2-[5-Hydroxy-4-(2-nitrophenyl)pent-1-yn-1-yl]-9H-thioxanthen-9-one (2). To a stirred soln. of 6 (735 mg, 2.52 mmol) [49] in anh. THF (20 ml), CuI (32 mg, 0.17 mmol), [Pd(PPh₃)₄] (48 mg, 0.042 mmol), and Et₃N (5 ml, 35.9 mmol) were added in this order. Then, a soln. of 5 (511 mg, 2.49 mmol) in anh. THF (5 ml) was added dropwise over a period of 2 h at r.t. The mixture was stirred overnight, and the solvent was evaporated. The residue was taken up in Et₂O (20 ml) and sat. aq. NH₄Cl soln. (20 ml), the org. phase was separated, and the aq. phase was re-extracted with Et₂O (2 × 10 ml). The combined org. phases were dried (MgSO₄), and the solvent was evaporated. Purification by FC (AcOEt/hexane 0:100 \rightarrow 35:65) afforded 2 (318 mg, 31%). Colorless foam. ¹H-NMR (400 MHz, CDCl₃): 8.59 (dd, J = 8.2, 1.4, H – C(8) (Tx)); 8.53 (d, J = 1.7, H – C(1) (Tx)); 7.83 (d, J = 8.8, arom. H); 7.65 – 7.39 (m, 8 arom. H); 4.10 (dd, J = 16.8, 6.1, 1 H of OCH₂); 4.06 (dd, J = 16.6, 6.4, 1 H of OCH₂); 3.75 (quint., J = 6.8, benzylic CH); 3.00 (dd, J = 17.0, 6.6, 1 of CH₂); 2.91 (dd, J = 17.0, 6.9, 1 H of CH₃). 5'-O-([[2-(2-Nitrophenyl)-5-(9-oxo-9H-thioxanthen-2-yl)pent-4-yn-1-yl]oxy]carbonyl)thymidine (7). To a stirred soln. of **2** (318 mg, 0.765 mmol) in anh. THF (10 ml), a 20% soln. of phosgene in toluene (3 ml) was added, and the reaction mixture was stirred at r.t. for 14 h. The solvents were evaporated, and the chloroformate residue was dissolved in anh. CH₂Cl₂ (10 ml). In another flask, thymidine (200 mg, 0.83 mmol, dried for 5 h *in vacuo*) was dissolved in anh. pyridine (10 ml). The thymidine soln. was cooled to -40° , and the chloroformate soln. was added dropwise over 4 h with stirring. During the addition, the temp. was maintained between -30° to 0°. The mixture was allowed to warm to r.t., and stirring was continued for 2 d. Removal of the solvents, coevaporation of the residue with toluene (3×5 ml), and FC (MeOH/CH₂Cl 0:100 \rightarrow 5:95) gave **7** (81 mg, 15%). Colorless solid. M.p. $79-81^{\circ}$. ¹H-NMR (400 MHz, (D_6)DMSO): 11.27 (s, NH); 8.45 (dd, J = 8.1, 1.2, H-C(8) (Tx)); 8.29 (d, J = 1.7, H-C(1) (Tx)); 7.91 (d, J = 8.1, arom. H); 7.88 -7.72 (m, 5 arom. H); 7.64 -7.52 (m, 3 arom. H); 7.40 (dd, J = 4.3, CH (T)); 6.16 (td, J = 6.9, 2.0, H-C(1')); 5.40 (br. s, OH); 4.65 -4.59 (m, 1 H of CH₂O); 4.54 -4.48 (m, 1 H of CH₂O); 4.31 -4.17 (m, CH₂(5'), H-C(3')); 3.92 -3.88 (m, H-C(4')); 3.82 (quint. J = 6.8, benzylic CH); 3.02 (dd, J = 17.3, 6.4, 1 H of CH₂-C \equiv); 2.93 (dd, J = 17.2, 79, 1 H of CH₂-C \equiv); 2.15 -2.05 (m, CH₂(2')); 1.72 (d, J = 3.2, Me). MALDI-MS (matrix: DHB): 683.2 (M^* , C_3 2-(2-Nitrophenyl)pent-4-ene-1-ol (10). MeOH (20 ml) was added slowly within 3 h to a stirred suspension of 14 [21] (8.80 g, 37.4 mmol) and NaBH₄ (8.80 g, 232 mmol) in anh. THF (100 ml) under N₂ atmosphere at r.t. Stirring was continued overnight. H₂O (10 ml) was added, and, after 10 min of vigorous stirring, the solvents were evaporated. The residue was partitioned between CH₂Cl₂ (100 ml) and H₂O (100 ml), the org. layer was separated, the aq. layer was extracted with CH₂Cl₂ (3 × 30 ml), and the combined org. layers were washed with H₂O (100 ml), dried (MgSO₄), and concentrated. A yellow oil (7.2 g, 34.9 mmol, 93%) was obtained, which was used for the next step without further purification. 1 H-NMR (250 MHz, CDCl₃): 7.74 (dd, J = 8.1, 1.2, H-C(3')); 7.61 - 7.47 (m, H-C(5'), H-C(6')); 7.36 (td, J = 7.0, 1.6, H-C(4')); 5.69 (ddt, J = 17.1, 10.1, 7.1, H-C(4)); 5.05 - 4.94 (m, CH₂(5)); 3.93 - 3.78 (m, CH₂(1)); 3.49 (quint, J = 6.7, H-C(2)); 2.62 - 2.36 (m, CH₂(3)); 1.67 (br. s, OH). 5-{[tert-Butyl(dimethyl)sityl]oxy}-4-(2-nitrophenyl)pent-1-ene (15)¹). To an ice-cold soln. of 10 (7.2 g, 35 mmol) in anh. CH₂Cl₂ (150 ml), 1*H*-imidazole (3.0 g, 44 mmol) and *t*-BuMe₂SiCl (5.9 g, 39 mmol) were added with stirring. The cooling bath was removed, and the mixture was stirred at r.t. for 12 h. The reaction was quenched with MeOH (20 ml), and after 10 min of stirring, sat. aq. NaHCO₃ soln. (100 ml) was added. The org. layer was separated, and the aq. phase was re-extracted with CH₂Cl₂ (3 × 30 ml). The combined org. phases were washed with sat. aq. NaHCO₃ soln. (15 ml), dried (MgSO₄), and evaporated. The crude product was purified by FC (hexane/AcOEt 8:1) to give 15 (11.2 g, 90%). Light yellow oil. ¹H-NMR (250 MHz, CDCl₃): 7.72 (*dd*, J = 8.5, 1.8, H – C(3')); 7.49 – 7.52 (m, H – C(5'), H – C(6')); 7.26 – 7.35 (m, H – C(4')); 5.70 (*ddt*, J = 17.1, 10.1, 7.1, H – C(2)); 5.05 – 4.92 (m, CH₂(1)); 3.83 – 3.72 (m, CH₂(5)); 3.49 – 3.38 (m, H – C(4)); 2.69 – 2.56 (m, H_a – C(3)); 2.49 – 2.36 (m, H_b – C(3)); 0.82 (s, *t*-Bu); – 0.06 (s, Me); – 0.09 (s, Me). 2-[5-Hydroxy-4-(2-nitrophenyl)pent-1-enyl]-9H-thioxanthen-9-one (8). Method A. To a stirred soln. of 10 (104 mg, 0.5 mmol) in anh., degassed DMF (5 ml), kept under N_2 atmosphere, K_2CO_3 (76 mg, 0.55 mmol), ¹⁾ Systematic silane nomenclature was avoided for the sake of clarity. [Pd(OAc)₂] (12 mg, 0.05 mmol), Bu₃P (25 μ l, 0.1 mmol), and **12** [19][20] (186 mg, 0.55 mmol) were rapidly added at r.t., and in the order mentioned. The flask was covered with Al foil, and the mixture was heated at 100° for 3 h. After cooling to r.t., brine (10 ml) and Et₂O (10 ml) were added under N₂ atmosphere. The org. phases were separated, the aq. phase was re-extracted with Et₂O (10 ml), the combined org. layer was dried (MgSO₄), and the solvent was evaporated. CC (AcOEt/hexane 10:90 \rightarrow 60:40) followed by crystallization from hexane/ Et₂O 1:1 afforded the desired coupling product **8** (50 mg, 24%). *Method B.* To a stirred soln. of **15** (322 mg, 1.0 mmol) in anh. degassed DMF (10 ml), kept under N_2 , K_2CO_3 (152 mg, 1.1 mmol), [Pd(OAc)₂] (23 mg, 0.1 mmol), Bu₃P (49.4 μl, 0.2 mmol), and **12** (372 mg, 1.1 mmol) were added rapidly at r.t., and in the order mentioned. The flask was covered with Al foil, and the mixture was heated at 100° for 3 h. After cooling to r.t., brine (10 ml) was added. The mixture was extracted with Et₂O (3 × 20 ml), the combined org. layer was washed with H₂O (2 × 20 ml), dried (MgSO₄), and evaporated. CC (AcOEt/hexane 10:90 → 25:75) gave the corresponding *silyl-protected* coupling product²) as an impure mixture. This crude product (532 mg) was dissolved in THF (10 ml) and treated at 0° with Bu₄NF (1m soln. in THF, 1.4 ml, 1.4 mmol). The mixture was then stirred at r.t. for 16 h, and extracted with CH₂Cl₂ (20 ml and 10 ml). The combined org. phase was washed with sat. aq. NH₄Cl soln. (20 ml), dried (MgSO₄), and evaporated. The crude product was purified as described in *Method A* to afford **8** (178 mg) in 43% overall yield. Data of **8**. Yellow powder. M.p 132 – 133°. ¹H-NMR (250 MHz, (D₆)DMSO): 8.45 (dd, J = 8.2, 1.2, H – C(8) (Tx)); 8.27 (s, H – C(1) (Tx)); 7.85 – 7.40 (m, 9 arom. H); 6.52 (d, J = 15.9, Tx – CH=); 6.33 (dt, J = 15.9, 7.0, CH₂CH=); 4.89 (t, J = 5.19, OH); 3.72 – 3.58 (m, OCH₂); 3.33 (m, benzylic CH, partly masked by water signal); 2.82 – 2.72 (m, 1 H of CH₂CH=); 2.63 – 2.54 (m, 1 H of CH₂CH=). Anal. calc. for C₂₄H₁₉NO₄S (417.48): C 69.05, H 4.59, N 3.36; found: C 68.87, H 4.76, N 3.43. Data of Silyl-Protected Intermediate²): ¹H-NMR (250 MHz, CDCl₃): 8.61 (d, J = 8.0, 1 H, H-C(8) (Tx)); 8.43 (d, J = 1.2, H-C(1) (Tx)); 7.72 (dd, J = 7.3, 1.2, H-C(3)); 7.43 - 7.67 (m, 7 arom. H); 7.29 - 7.40 (m, arom. H); 6.49 (d, J = 15.6, Tx-CH=); 6.26 (dt, J = 15.9, 6.7, CH₂CH=); 3.90 - 3.76 (m, OCH₂); 3.61 - 3.51 (m, benzylic CH); 2.93 - 2.79 (m, 1 H of CH₂CH=); 2.70 - 2.55 (m, 1 H of CH₂CH=); 0.84 (s, t-Bu); -0.04 (s, Me); -0.06 (s, Me). 5'-O-([[2-(2-Nitrophenyl)-5-(9-oxo-9H-thioxanthen-2-yl)pent-4-en-1-yl]oxy]carbonyl)thymidine (11). To a stirred soln. of 8 (67 mg, 0.16 mmol) in anh. THF (2 ml), a 20% soln. of phosgene in toluene (0.9 ml) was added dropwise via syringe under N2 atmosphere at 0°. The cooling bath was removed, and the mixture was stirred for 12 h at r.t. Monitoring by TLC indicated complete consumption of the starting material and the formation of the corresponding chloroformate (R_f 0.60 (CH₂Cl₂)). The solvent was evaporated, the residue was co-evaporated with anh. CH_2Cl_2 (3 × 2 ml), and the chloroformate intermediate was dissolved in anh. CH_2Cl_2 (1 ml). In a separate flask, thymidine (39 mg, 0.16 mmol) was first co-evaporated with anh. pyridine (2×1 ml), and then dissolved in anh. pyridine (1 ml). To the stirred thymidine soln., the chloroformate soln, was added dropwise via syringe under N_2 at 0° . The mixture was stirred at this temp. for 2 h, then an additional 2 h at r.t., and was finally kept for 12 h at 10°. The solvent was evaporated, the oily residue was dissolved in CH₂Cl₂ (15 ml), and washed with 0.1M aq. HCl soln. (3×10 ml). The combined aq. layer was re-extracted with CH₂Cl₂ (2×5 ml). The combined org, phase was dried (MgSO₄), and the solvent was evaporated. Purification by CC (MeOH/CH₂Cl₂ $0:100 \rightarrow 4:96$) followed by crystallization from Et₂O afforded **11** (41 mg, 34%). Yellow powder. M.p. $152-154^{\circ}$. 1 H-NMR (400 MHz, (D₆)DMSO): 11.24 (br. s, NH); 8.44 (d, J = 8.1, H-C(8) (Tx)); 8.27 (br. s, H-C(1) (Tx)); 7.82 - 7.73 (m, 5 arom. H); 7.69 (t, J = 7.0, arom. H); 7.57 (t, J = 8.1, arom. H); 7.47 (t, J = 8.1, arom. H); 7.37 (dd, J = 8.1, arom. H); 7.47 (t, $(t, J = 8.1, \text{ arom$ J = 3.8, 0.9, CH(T); 6.52 (d, J = 16.2, Tx - CH = 10.2, Tx - CH = 10.2, C $5.38(d, J = 4.4, 3'-OH); 4.53-4.35(m, CHCH_2O); 4.26-4.15(m, H-C(3'), CH_2(5')); 3.91-3.84(m, H-C(4'));$ 3.65 (quint, J = 6.7, benzylic CH); 2.80 – 2.60 (m, CH₂CH=); 2.13 – 2.05 (m, CH₂(2')); 1.69 (d, J = 4.6, Me). Anal. calc. for C₃₅H₃₁N₃O₁₀S · 0.5 H₂O (694.71): C 59.74, H 4.73, N 5.97; found: C 59.92, H 4.78, N 6.05. 2-[5-Hydroxy-4-(2-nitrophenyl)pentyl]-9H-thioxanthen-9-one (9b). 9-Borabicyclo[3.3.1]nonane (9-BBN; 0.5M in THF, 60 ml, 30 mmol) was added dropwise to a stirred soln. of 15 (6.7 g, 20.8 mmol) in anh. THF (15 ml) over a period of 1 h under N_2 atmosphere. The mixture was stirred for 4 h. In a separate flask, a cat. amount of [Pd(dppf)Cl₂] (0.50 g, 0.68 mmol, 3 mol-%), aq. K_3 PO₄ (3M soln., 8 ml, 24 mmol), and degassed DMF (60 ml) were mixed in this order under N_2 atmosphere. After 15 min, compound 6 (6.3 g, 21.6 mmol) was added with vigorous stirring, followed by dropwise addition of the above borane *via* syringe. The flask was covered with Al foil, and the mixture was stirred at 80° for 4 h. After cooling to r.t., the mixture was taken up in Et₂O (150 ml) and brine (100 ml). The aq. layer was re-extracted with Et₂O (3 × 30 ml), and the combined org. phase was ^{2) 2-[5-{[}*tert*-Butyl(dimethyl)silyl]oxy}-4-(2-nitrophenyl)pent-1-enyl]-9*H*-thioxanthen-9-one. washed with sat. aq. NaHCO $_3$ soln. (50 ml), dried (MgSO $_4$), and evaporated. The crude product was subjected to FC (AcOEt/hexane $3.5:96.5 \rightarrow 8:92$) to afford the silyl-protected product $\mathbf{9a}^3$) (contaminated with borate), which was used without further purification. Crude $\mathbf{9a}$ (7.72 g, 14.5 mmol) was dissolved in THF (120 ml) and treated with Bu $_4$ NF \cdot 3 H $_2$ O (6.3 g, 20 mmol) under stirring at 0°. The cooling bath was removed, and the mixture was stirred for 15 h at r.t., diluted with Et $_2$ O (100 ml), and washed with sat. aq. NH $_4$ Cl soln. (50 ml). The combined aq. layer was re-extracted with Et $_2$ O (20 ml). The combined org. phase was dried (MgSO $_4$) and evaporated. Purification by CC (AcOEt/hexane $5:95 \rightarrow 50:50$) and crystallization from hexane afforded $\mathbf{9b}$ (4.07 g, 47% based on $\mathbf{15}$). Data of **9a.** ¹H-NMR (250 MHz, CDCl₃): 8.62 (dd, J = 7.9, 1.2, H–C(8) (Tx)); 8.38 (d, J = 1.8, H–C(1) (Tx)); 7.68 (dd, J = 7.9, 1.2, H–C(3')); 7.62 – 7.39 (m, 7 arom. H); 7.31 (td, J = 7.9, 1.5, H–C(4')); 3.70 (d, J = 5.8, CH₂O); 3.42 – 3.31 (m, CH); 2.77 – 2.69 (m, Tx–CH₂); 1.34 – 1.75 (m, (CH₂)C₂); 0.77 (s, t-Bu); –0.10 (s, Me); –0.11 (s, Me). Data of $9b^3$). Light yellow solid. M.p. $115-117^\circ$. 1 H-NMR (250 MHz, (D₆)DMSO): 8.46 (dd, J=8.2, 1.0, H-C(8) (Tx)); 8.22 (d, J=1.5, H-C(1) (Tx)); 7.86-7.66 (m, 8 arom. H); 7.42 (td, J=7.9, 1.5, H-C(4')); 4.77 (t, J=5.2, OH); 3.60-3.45 (m, CH₂O); 3.17-3.07 (m, CH); 2.70 (t, J=7.0, Tx-CH₂); 1.40-1.70 (m, (CH₂)₂). Anal. calc. for C₂₄H₂₁NO₄S (419.49): C 68.72, H 5.05, N 3.36; found: C 68.64, H 5.11, N 3.40. 5'-O-([[2-(2-Nitrophenyl)-5-(9-oxo-9H-thioxanthen-2-yl)pentyl]oxy]carbonyl)thymidine (13). To an icecold soln. of trichloromethyl chloroformate (171 µl, 1.41 mmol) in anh. THF (5 ml) was added dropwise a soln. of 9b (443 mg, 1.06 mmol) and Et₃N (148 µl, 1.06 mmol) in anh. THF (5 ml). The mixture was stirred for 2 h at 0°, and then for 2 h at r.t., until TLC monitoring indicated complete consumption of 9b and formation of the chloroformate (R_f 0.51 (CH₂Cl₂)). The solid was filtered off and washed with anh. THF. The solvent was evaporated, and the residue was dissolved in anh. CH₂Cl₂ (5 ml). In a separate flask, thymidine (257 mg, 1.06 mmol) was first co-evaporated with anh. pyridine $(4 \times 5 \text{ ml})$, and then dissolved in anh. pyridine (5 ml). To the stirred thymidine soln., the above chloroformate soln. was added via syringe at 0°, and the mixture was kept at this temp. for 2 d. The solvents were evaporated, the residue was co-evaporated with EtOH $(4 \times 5 \text{ ml})$, then with CH₂Cl₂ (3×5 ml). The crude product was purified by FC (MeOH/CH₂Cl₂ 0.5:95.5→5:95) and crystallized from EtO_2 to give 13 (422 mg, 58%). Light yellow powder. M.p. $100-102^{\circ}$. ¹H-NMR (250 MHz, (D₆)DMSO): 11.29 (br. s, NH); 8.45 (dd, J = 8.2, 1.2, H-C(8) (Tx)); 8.22 (d, J = 1.8, H-C(1) (Tx)); 7.85-7.47 (m, 9 arom. H); 7.37 (dd, J = 4.8, 0.9, CH (T)); 6.15 (t, J = 7.0, H - C(1')); 5.41 (d, J = 4.3, 3' - OH); 4.38 – 4.12 (m, 9) CH_2O , $CH_2(5')$, H-C(3')); 3.87 (m, H-C(4')); 3.43-3.37 (m, CH); 2.73-2.65 (m, $Tx-CH_2$); 2.12-2.04 (m, $CH_2(2')$), 1.85 - 1.69 (m, CH_2); 1.69 (d, J = 2.7, Me); 1.61 - 1.37 (m, CH_2). Anal. calc. for $C_{35}H_{33}N_3O_{10}S \cdot 0.5 H_2O_{10}S H_2O_{10}S$ (696.72): C 60.33, H 4.91, N 6.03; found: C 60.40, H 5.07, N 5.93. 2-(2-Nitrophenyl)but-3-en-1-ol (17a). To a stirred soln. of 18 [32] (462 mg, 2.83 mmol) in anh. DMSO (2 ml), paraformaldehyde (128 mg 4.25 mmol) was added, and the suspension was treated with *t*-BuOK (13 mg, 0.11 mmol). The mixture was stirred at r.t. for 2 h, and then poured into brine (40 ml). The product was extracted with AcOEt (3×20 ml), the combined org. phase was washed with brine (20 ml), H₂O (2×30 ml), dried (MgSO₄), and evaporated. Purification by FC (AcOEt/hexane $20:80 \rightarrow 40:60$) afforded 17a (472 mg, 86%). Light yellowish oil. ¹H-NMR (250 MHz, (D₆)DMSO): 7.82 (*dd*, J = 8.2, 1.2, H–C(3')); 7.66 (*td*, J = 7.0, 1.2, H–C(5')); 7.59 (*dd*, J = 7.8, 1.5, H–C(6')); 7.46 (*td*, J = 8.2, 1.8, H–C(4')); 6.02 (*ddd*, J = 17.4, 10.4, 7.0, H–C(3)); 5.12 (*dt*, J = 10.4, 1.2, H_a-C(4)); 5.02 (*dt*, J = 17.4, 1.2, H_b-C(4)); 4.87 (br., OH); 3.94–3.83 (*m*, CH); 3.76–3.60 (*m*, OCH₂). Anal. calc. for C₁₀H₁₁NO₃ (193.20): C 62.17, H 5.74, N 7.25; found: C 61.72, H 5.90, N 7.26. 4-{[(tert-Butyl)(dimethyl)silyl]oxy}-3-(2-nitrophenyl)but-1-ene (17b). Prepared from 17a (410 mg, 2.12 mmol), imidazole (361 mg, 5.30 mmol) and t-BuMe₂SiCl (639 mg, 4.24 mmol), as described for 15, followed by FC (hexane/AcOEt 12:1): 651 mg (quant.). Light yellowish oil. 1 H-NMR (250 MHz, CDCl₃): 7.75 (dd, J = 8.6, 1.2, H – C(3')); 7.58 – 7.45 (m, H – C(5'), H – C(6')); 7.34 (td, J = 8.9, 2.1, H – C(4')); 6.05 (ddd, J = 17.2, 10.7, 6.7, CH=); 5.19 (dt, J = 11.0, 1.2, 1 H of CH₂=); 5.14 (dt, J = 17.4, 1.2, 1 H of CH₂=); 4.16 (dd, J = 6.7, CH); 3.91 (dd, J = 9.8, 5.8, 1 H of CH₂OSi); 3.85 (dd, J = 9.8, 6.7, 1 H of CH₂OSi); 0.73 (s, t-Bu); -0.06 (s, Me); -0.07 (s, Me). The product was used without further purification. 2-[4-Hydroxy-3-(2-nitrophenyl)butyl]-9H-thioxanthen-9-one (16b). Prepared from 17b (421 mg, 1.37 mmol), 9-BBN (0.5M soln. in THF, 5.5 ml, 2.74 mmol), 12 (435 mg, 1.29 mmol), [Pd(dppf)Cl₂] (47 mg, 0.065 mmol), and aq. 3M K₃PO₄ soln. (0.86 ml, 2.58 mmol), as described for 9b. The silyl-protected intermediate 16a was purified by FC (AcOEt/hexane 3.5:96.5 \rightarrow 30:70), and the t-BuMe₂Si group was cleaved with Bu₄NF ^{3) 2-[5-{[}tert-Butyl(dimethyl)silyl]oxy}-4-(2-nitrophenyl)pentyl]-9H-thioxanthen-9-one. (1M soln. in THF, 1.8 ml, 1.8 mmol) in THF (10 ml), as described above. Purification by CC (AcOEt/hexane $15:85 \rightarrow 50:50$) and crystallization from hexane afforded **16b** (266 mg, 51% from **12**). Data of **16a.** ¹H-NMR (250 MHz, CDCl₃): 8.62 (d, J = 8.0, H–C(8) (Tx)); 8.36 (d, J = 1.5, H–C(1) (Tx)); 7.72 (d, J = 7.9, H–C(3')); 7.66 – 7.31 (m, 8 arom. H); 3.78 (d, J = 5.5, CH₂O); 3.45 – 3.36 (m, CH); 2.81 – 2.59 (m, CH₂); 2.34 – 2.03 (m, CH₂); 0.81 (s, t-Bu); –0.07 (s, Me); –0.08 (s, Me). Data of **16b**. Colorless solid. M.p. $100-112^{\circ}$. ¹H-NMR (250 MHz, (D₆)DMSO): 8.46 (dd, J=8.2, 1.5, H-C(8) (Tx)); 8.20 (d, J=1.5, H-C(1) (Tx)); 7.88-7.40 (m, 9 arom. H); 4.84 (t, J=5.19, OH); 3.66-3.54 (m, CH₂O); 3.22-3.10 (m, benzylic CH); 2.76-2.54 (m, CH₂CH); 2.28-1.90 (m, CH₂CH). Anal. calc. for C₂₃H₁₉NO₄S (405.47): C 68.13, H 4.72, N 3.45; found: C 68.16, H 4.67, N 3.51. 5′-O-([[2-(2-Nitrophenyl)-4-(9-oxo-9H-thioxanthen-2-yl)butyl]oxy]carbonyl)thymidine (19). Prepared as described for 13, from 16b (100 mg, 0.27 mmol), trichloromethyl chloroformate (43.4 μl, 0.36 mmol), and Et₃N (38 μl, 0.27 mmol) in anh. THF (4 ml), followed by reaction of the resulting chloroformate with thymidine (65 mg, 0.27 mmol) in anh. pyridine/CH₂Cl₂ 1:1 (3 ml). Purification by FC (MeOH/CH₂Cl₂ 0:100 \rightarrow 4:96) followed by crystallization from Et₂O: 126 mg (69%) of 16b. Colorless powder. M.p. 110 – 112°. ¹H-NMR (250 MHz, (D₆)DMSO): 11.30 (br. s, NH); 8.46 (d, J = 7.9, H–C(8) (Tx)); 8.18 (d, J = 1.8, H–C(1) (Tx)); 7.87 – 7.45 (m, 9 arom. H); 7.38 (d, J = 6.10, CH (T)); 6.16 (t, J = 6.10, H–C(1′)); 5.43 (d, J = 4.3, 3′-OH); 4.54–4.11 (m, H–C(3′), CH₂(5′), CH₂); 3.92 – 3.84 (m, H–C(4′)); 3.56 – 3.40 (m, benzylic CH); 2.80 – 2.53 (m, CH₂); 2.25 – 1.99 (m, CH₂(2′), CH₂); 1.68 (d, J = 4.8, Me). Anal. calc. for C₃₄H₃₁N₃O₁₀S (673.69): C 60.62, H 4.64, N 6.24; found: C 60.23, H 4.60, N 6.30. tert-*Butyl* 4-*Ethyl*-3-nitrobenzoate (**22b**). A stirred soln. of **22a** [34] (4.5 g, 23.1 mmol), DMAP (342 mg, 2.3 mmol), and t-BuOH (2.6 g, 35.1 mmol) in anh. CH_2Cl_2 (70 ml) was treated with DCC (5.23 g, 25.4 mmol) at 0°. After 5 min of stirring at 0°, the cooling bath was removed, and the mixture was stirred at r.t. for 3 h. The precipitate was suction-filtered, washed with CH_2Cl_2 , and evaporated. To the oily residue containing a precipitate, hexane (90 ml) was added. This mixture was passed through a short plug of SiO_2 (7 g) to remove insoluble dicyclohexylurea, and the pad was washed with hexane/AcOEt 50:1 (50 ml). The org. soln. was washed with IM aq. HCl soln. (2 × 50 ml), 5% aq. K_2CO_3 soln. (50 ml), and dried (MgSO₄). Removal of the solvent afforded pure **22b** (5.57 g, 96%). Light yellowish oil. ¹H-NMR (250 MHz, CDCl₃): 8.43 (*d*, *J* = 1.8, H-C(2)); 8.11 (*dd*, *J* = 8.2, 1.8, H-C(6)); 7.42 (*d*, *J* = 7.9, H-C(5)); 2.95 (*q*, *J* = 7.3, CH₂); 1.60 (*s*, *t*-Bu); 1.29 (*t*, *J* = 7.3, Me). tert-*Butyl* 4-(2-Hydroxy-1-methylethyl)-3-nitrobenzoate (23). Prepared as described for 17a, starting from 22b (4.24 g, 16.87 mmol), paraformaldehyde (763 mg, 25.41 mmol), and *t*-BuOK (70 mg, 0.62 mmol). Purification by FC (AcOEt/hexane $10:90 \rightarrow 35:65$) gave 23 (4.75g, 100%). Yellow oil. ¹H-NMR (250 MHz, (D₆)DMSO): 8.19 (d, J = 1.8, H – C(2)); 8.09 (dd, J = 8.2, 1.5, H – C(6)); 7.75 (d, J = 8.2, H – C(5)); 4.79 (t, J = 5.2, OH); 3.55 – 3.49 (m, CH₂); 3.27 (q, J = 6.7, benzylic CH); 1.55 (s, t-Bu); 1.24 (d, J = 7.0, Me). tert-*Butyl* 4-{2-[(2-Methoxyethoxy)methoxy]-1-methylethyl]-3-nitrobenzoate (21a). To a stirred soln. of 23 (4.75g, 16.88 mmol) in anh. CH₂Cl₂ (15 ml) was added Et(i-Pr)₂N (5.6 ml, 32.07 mmol), followed by a soln. of MeO(CH₂)₂OCH₂Cl (MEMCl; 2.9 ml, 25.32 mmol) in anh. CH₂Cl₂ (10 ml). After 4 h of stirring at r.t., a new portion of MEMCl (0.5 ml, 3.0 mmol) was added, and stirring was continued for 17 h. The mixture was diluted with CH₂Cl₂ (60 ml) and washed with 0.1m aq. HCl soln. (2 × 30 ml), sat. aq. NaCO₃ soln. (30 ml), and H₂O (30 ml). The org. layer was separated, dried (MgSO₄), and evaporated. The crude product was purified by FC (AcOEt/hexane 10:90 \rightarrow 35:65) to give 21a (5.31g, 85%). Yellow oil. ¹H-NMR (250 MHz, CDCl₃): 8.29 (*d*, *J* = 1.8, H-C(2)); 8.13 (*dd*, *J* = 8.2, 1.8, H-C(6)); 7.56 (*d*, *J* = 8.2, H-C(5)); 4.66-4.58 (*m*, OCH₂O); 3.71-3.46 (*m*, benzylic CH, CHCH₂O, 2 OCH₂); 3.37 (*s*, MeO); 1.60 (*s*, *t*-Bu); 1.34 (*d*, *J* = 6.74, Me). Anal. calc. for C₁₈H₂₇NO₇ (369.41): C 58.52, H 7.37, N 3.79; found: C 58.32, H 7.40, N 3.98. 4-[2-[(2-Methoxyethoxy)methoxy]-1-methylethyl]-3-nitrobenzoic Acid (21b). To a stirred suspension of NaH (60% dispersion in mineral oil; 2.24 g, 56 mmol) in anh. DMF (15 ml), a soln. of 21a (2.59 g, 7.00 mmol) in DMF (10 ml) was added. The mixture was stirred for 1 h, and then carefully poured into H₂O (160 ml). The aq. soln. was acidified with 3M HCl to pH 4−5, and extracted with Et₂O (2 × 70 ml). The combined org. layer was washed with H₂O (4 × 70 ml), dried (MgSO₄), and evaporated. The crude product was purified by FC (AcOEt/hexane 25:75 → 50:50) to afford 21b (2.05 g, 94%). Yellow oil. ¹H-NMR (250 MHz, CDCl₃): 8.45 (d, J = 1.8, H−C(2)); 8.23 (dd, J = 8.2, 1.8, H−C(6)); 7.64 (d, J = 8.2, H−C(5)); 4.68−4.60 (m, OCH₂O); 3.74−3.50 (m, benzylic CH, CHCH₂O, 2 OCH₂); 3.38 (s, MeO); 1.37 (d, J = 6.7, Me). Anal. calc. for C₁₄H₁₉NO₇ (313.30): C 53.67, H 6.11, N 4.47; found: C 53.55, H 6.26, N 4.61. 9-Oxo-9H-thioxanthen-2-yl 4-{2-[(2-Methoxyethoxy)methoxy]-1-methylethyl]-3-nitrobenzoate (25a). To a stirred soln. of 21b (300 mg, 0.96 mmol) in anh. DMF (9 ml), DMAP (98 mg, 0.79 mmol), 24 (240 mg, 1.05 mmol) [41], and EDCI (368 mg, 1.92 mmol) were added in this order. The mixture was stirred for 24 h at r.t. DMF was removed by co-evaporation with toluene, the oily residue was dissolved in CH₂Cl₂ (20 ml), and washed with sat. aq. NH₄Cl soln. (2 × 15 ml), 5% aq. K₂CO₃ soln. (15 ml), and brine (2 × 15 ml). The org. phase was separated, dried (MgSO₄), and evaporated. Purification by FC (AcOEt/hexane 10:90 \rightarrow 50:50) afforded **25a** (321 mg, 64%). Yellow oil. ¹H-NMR (250 MHz, CDCl₃): 8.63 (*dd*, J = 8.2, 1.5, H \rightarrow C(8) (Tx)); 8.58 (*d*, J = 1.8, H \rightarrow C(2)); 8.45 (*d*, J = 2.4, H \rightarrow C(1) (Tx)); 8.37 (*dd*, J = 8.2, 1.8, H \rightarrow C(6)); 7.73 \rightarrow 7.49 (m, 6 arom. H); 4.69 \rightarrow 4.63 (m, OCH₂O); 3.77 \rightarrow 3.49 (m, benzylic CH, CHCm2O, 2 OCH₂); 3.39 (m3, MeO); 1.40 (m4, m5, MeO). Anal. calc. for C₂₇H₂₅NO₈S (523.56): C 61.94, H 4.81, N 2.68; found: C 61.92, H 4.78, N, 2.70. 9-Oxo-9H-thioxanthen-2-yl 4-(2-Hydroxy-1-methylethyl)-3-nitrobenzoate (25b). To a stirred soln. of 25a (389 mg, 0.74 mmol) in THF (10 ml) was slowly added a 3m aq. HCl soln. (10 ml) at 0°. The mixture was gently refluxed for 5 h, cooled to r.t., and poured into chilled sat. aq. NaHCO₃ soln. (50 ml). After gas evolution had ceased, the mixture was extracted with CH₂Cl₂ (3 × 20 ml), the combined org. phase was washed with sat. aq. NaHCO₃ soln. (20 ml) and brine (2 × 20 ml), dried (MgSO₄), and evaporated. Purification by FC (AcOEt/hexane 20:80 \rightarrow 60:40) and crystallization from Et₂O yielded 25b (212 mg, 66%). Yellow crystals. M.p. 189–190°. ¹H-NMR (250 MHz, (D₆)DMSO): 8.50 – 8.45 (m, 2 arom. H); 8.40 – 8.34 (m, 2 arom. H); 8.02 (d, J = 8.6, arom. H); 7.93 – 7.77 (m, 4 arom. H); 7.62 (td, J = 8.2, 1.2, arom. H); 4.89 (t, J = 5.2, OH); 3.63 – 3.55 (m, CH₂O); 3.35 – 3.26 (m, benzylic CH, partly masked by water signal); 1.29 (d, J = 7.0, Me). Anal. calc. for C₂₃H₁₇NO₆S (435.45): C 63.44, H 3.94, N 3.22; found: C 63.30, H 3.93, N 3.25. 5'-O-[[2-(2-Nitro-4-[[(9-oxo-9H-thioxanthen-2-yl)oxy]carbonyl]phenyl)propoxy]carbonyl]thymidine (20). Prepared as described for 13, but starting from 25b (130 mg, 0.30 mmol), by phosgenation with trichloromethyl chloroformate (43 μl, 0.40 mmol) in the presence of Et₃N (42 μl, 0.30 mmol) in anh. THF (4 ml), and subsequent reaction of the chloroformate with thymidine (73 mg, 0.30 mmol) in anh. pyridine/CH₂Cl₂ 1 : 1 (4 ml). Purification by FC (MeOH/CH₂Cl₂ 0:100 \rightarrow 5:95) followed by crystallization from Et₂O afforded 20 (123 mg, 58%). Light yellow solid. M.p. $162-164^{\circ}$. ¹H-NMR (250 MHz, (D₆)DMSO): 11.33 (s, NH); 8.58-8.37 (m, 3 arom. H); 8.06-7.77 (m, 5 arom. H); 7.62 (td, J = 8.2, 1.2, arom. H); 7.42-7.40 (m, CH (T)); 6.17 (t, J = 7.3, H-C(1')); 5.45 (d, J = 4.3, 3'-OH); 4.55-4.15 (m, CH₂O, H-C(3'), CH₂(5')); 3.91-3.85 (m, H-C(4')); 3.66-3.57 (m, benzylic CH); 2.14-2.06 (m, CH₂(2')); 1.73 (s, Me (T)); 1.33 (d, J = 7.0, Me). Anal. calc. for C₃₄H₂₉N₃O₁₂S·0.5 H₂O (712.67): C 57.30, H 4.24, N 5.90; found: C 57.43, H 4.24, N 6.16. 2-[3-(2-Hydroxy-1-methylethyl)-4-nitrophenyl]-9H-thioxanthene-9-one (26). A mixture of 6 (1.0 g, 3.44 mmol), commercially available bis(pinacolate)diborane 29 (1.05 g, 4.13 mmol), and AcOK (1.35 g, 13.76 mmol) in 1,4-dioxane (50 ml) was degassed by gentle bubbling N₂ through the stirred mixture for 30 min. Then, [Pd(dppf)Cl₂] (3 mol-%, 76 mg, 0.103 mmol) was added. The mixture was stirred at 65-70° for 16 h under N₂ atmosphere, and then cooled to r.t. A degassed soln. of 27 [30] (1.07 g, 4.13 mmol) in 1,4-dioxane (6 ml) was added, followed by [Pd(dppf)Cl₂] (3 mol-%, 76 mg, 0.103 mmol) and aq. 3m K₃PO₄ soln. (2.13 ml, 12.39 mmol), and in the order mentioned. The mixture was heated and stirred at 80° for 7 h under N_2 atmosphere. After cooling to r.t., the inorganic precipitate was filtered off, washed with CH2Cl2 and H2O, and the filtrate was concentrated to 5-7 ml. EtOH (15 ml) and H₂O (15 ml) were added to the residue, and the suspension was sonicated for 5 min. The precipitate was suction-filtered, washed with 50% aq. EtOH, suspended in EtOH/Et₂O 1:1 (25 ml), and sonicated for 5 min. Filtration and washing with EtOH/Et₂O 1:1 afforded 26 (1.04 g, 77%). Yellow powder. M.p. $174-176^{\circ}$. ¹H-NMR $(400 \text{ MHz}, (D_6)\text{DMSO})$: 8.74 (d, J=1.9, H-C(1))(Tx); 8.50 (dd, J = 8.1, 1.0, H - C(8) (Tx)); 8.19 (dd, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 arom. H); 7.62 (td, J = 8.5, 2.2, arom. H); 8.03 – 7.80 (m, 6 H)J = 8.1, 1.2, H-C(7) (Tx)); 4.81 (t, J = 5.4, OH); 3.70-3.60 (m, CH_2); 3.37-3.29 (m, benzylic CH, partly masked by water signal); 1.33 (d, Me). Anal. calc. for $C_{22}H_{17}NO_4S$ (391.44): C 67.50, H 4.38, N 3.58; found: C 66.67, H 5.03, N 3.65. 5'-O-{[2-(2-Nitro-5-{[(9-oxo-9H-thioxanthen-2-yl)oxy]carbonyl]phenyl)propoxy]carbonyl]thymidine (30). Prepared as described for 11, starting from 26 (480 mg, 1.23 mmol), treated with a 20% soln. of phosgene in toluene (4 ml), followed by reaction of the resulting chloroformate with thymidine (388 mg, 1.60 mmol) in anh. pyridine/CH₂Cl₂ 1:1 (30 ml). The reaction was carried out at $-44^{\circ} \rightarrow r.t.$ for 20 h. Purification by FC (MeOH/CH₂Cl₂ 0:100 \rightarrow 3:97) yielded 30 (478 mg, 59%). Yellow powder. M.p. 228 -230° . ¹H-NMR (400 MHz, (D₆)DMSO): 11.27 (*s*, NH); 8.78 (*d*, J = 2.0, H -C(1) (Tx)); 8.51 (*d*, J = 8.0, H -C(8) (Tx)); 8.20 (*dd*, J = 8.3, 1.8, arom. H); 8.08 -7.80 (*m*, 6 arom. H); 7.63 (*t*, J = 7.5, H -C(7) (Tx)); 7.37 (*s*, CH (T)); 6.14 (*t*, J = 6.8, H -C(1')); 5.38 (br. *s*, OH); 4.51 -4.41 (*m*, CH₂O); 4.26 -4.15 (*m*, H -C(3'), CH₂(5')); 3.91 -3.86 (*m*, H -C(4')); 3.64 (*q*, J = 6.7, benzylic CH); 2.17 -2.03 (*m*, CH₂(2')); 1.68 (*s*, Me (T)); 1.39 (*d*, J = 6.8, CH -Me). Anal. calc. for C₃₃H₂₉N₃O₁₀S (659.66): C 60.08, H 4.43, N 6.37; found: C 58.00, H 4.41, N 6.38. ### REFERENCES - [1] R. J. Lipshutz, S. P. A. Fodor, T. R. Gingeras, D. J. Lockhart, Nature Genet. Suppl. 1999, 21, 20. - [2] M. C. Pirrung, Angew. Chem., Int. Ed. 2002, 41, 1276. - [3] D. Whitcombe, C. R. Newton, S. Little, Curr. Opin. Biotechnol. 1998, 9, 602. - [4] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, J. M. Trent, Nature Genet. 1999, 21, 10. - [5] R. J. Lipshutz, S. P. A. Fodor, Curr. Opin. Struct. Biol. 1994, 4, 376. - [6] 'DNA Microarrays: A Practical Approach', Ed. M. Schena, Oxford Press, New York, 1999. - [7] 'Microarray Biochip Technology', Ed. M. Schena, Eaton, Natick, 2000. - [8] 'Methods in Molecular Biology, Vol. 170: DNA Arrays. Methods and Protocols', Ed. J. B. Rampa, Humana Press, Totowa, NJ, 2001. - [9] W. M. Freeman, D. J. Robertson, K. E. Vrana, Biotechniques 2000, 29, 1042. - [10] J. Wang, Nucleic Acids Res. 2000, 28, 3011. - [11] D. H. Blohm, A. Guiseppe-Elie, Curr. Opin. Biotechnol. 2001, 12, 41. - [12] C. M. Niemeyer, D. Blohm, Angew. Chem., Int. Ed. 1999, 38, 2865. - [13] M. C. Pirrung, V. S. Rana, 'Photoremovable Protecting Groups in DNA Synthesis and Microarray Fabrication', in 'Dynamic Studies in Biology: Phototriggers, Photoswitches, and Caged Compounds', Eds. M. Goeldner, R. S. Givens, J. Wiley & Sons, New York, 2005, p. 341. - [14] A. Hasan, K.-P. Stengele, H. Giegrich, P. Cornwell, K. R. Isham, R. A. Sachleben, W. Pfleiderer, R. S. Foote, *Tetrahedron* 1997, 53, 4247. - [15] S. Bühler, I. Lagoja, H. Giegrich, K.-P. Stengele, W. Pfleiderer, Helv. Chim. Acta 2004, 87, 620. - [16] D. Wöll, S. Walbert, K.-P. Stengele, T. Albert, T. Richmond, J. Norton, M. Singer, R. Green, W. Pfleiderer, U. E. Steiner, Helv. Chim. Acta 2004, 87, 28. - [17] K. Soai, H. Oyamada, M. Takase, A. Ookawa, Bull. Chem. Soc. Jpn. 1984, 57, 1948. - [18] K. Sonogashira, in 'Metal-Catalyzed Cross-Coupling Reactions', Ed. F. Diederich, P. T. Stang, Wiley-VCH, Weinheim, 1997, 203. - [19] J.-K. Moon, J.-W. Park, W. S. Lee, Y.-J. Kang, H.-A. Chung, M.-S. Shin, Y.-J. Yoon, K. H. Park, J. Heterocycl. Chem. 1999, 36, 793. - [20] A. M. Schoevaars, W. Kruizinga, W. J. Zijlstra, N. Veldman, A. L. Spek, B. L. Feringa, J. Org. Chem. 1997, 62, 4943 - [21] R. A. Bunce, M. H. Derrick, L. B. Johnson, S. V. Kotturi, J. Org. Chem. 2001, 66, 2822. - [22] M. Jonas, S. Blechert, E. Steckhan, J. Org. Chem. 2001, 66, 6896. - [23] P. N. Collier, I. Patel, J. K. Taylor, Tetrahedron Lett. 2002, 43, 3401. - [24] S.-K. Kang, K.-Y. Jung, C.-H. Park, E.-Y. Namkoong, T.-H. Kim, Tetrahedron Lett. 2002, 36, 6287. - [25] D. Hous, F. Kerr, S. Warren, Chem. Commun. 2000, 1783. - [26] B. Ernst, J. Gonda, R. Jeschke, U. Nubbemayer, R. Oehrlein, D. Belluš, Helv. Chim. Acta 1997, 80, 876. - [27] C. E. Schwartz, D. P. Curran, J. Am. Chem. Soc. 1990, 112, 9272. - [28] P. N. Collier, A. D. Campbell, I. Patel, J. K. Taylor, Tetrahedron Lett. 2000, 41, 7115. - [29] C. R. Harris, S. D. Kuduk, A. Balog, K. Savin, P. W. Glunz, S. J. Danishefsky, J. Am. Chem. Soc. 1999, 121, 7050. - [30] S. Walbert, W. Pfleiderer, U. E. Steiner, Helv. Chim. Acta 2001, 84, 1601. - [31] H. Giegrich, S. Eisele-Bühler, C. Hermann, E. Kvasyuk, R. Charubala, W. Pfleiderer, Nucleosides Nucleotides 1998, 17, 1987. - [32] I. Sapountzis, P. Knochel, Angew. Chem., Int. Ed. 2002, 41, 1610. - [33] C. P. Gorst, P. S. Steyn, J. Chem. Soc., Perkin Trans. 1 1987, 163. - [34] H. A. Fahim, A. M. Fleifel, J. Chem. Soc. 1952, 4519. - [35] B. Neises, W. Steglich, Angew. Chem., Int. Ed. 1978, 17, 552. - [36] E. J. Corey, J.-L. Gras, P.Ulrich, Tetrahedron Lett. 1976, 809. - [37] A. G. Schultz, S. J. Kirincich, J. Org. Chem. 1996, 61, 5631. - [38] S. Kanatomo, S. Nagai, T. Hase, K. Ohki, C. Nomura, E. Okezaki, *Chem. Pharm. Bull.* **1983**, *31*, 135. - [39] S. Paul, R. R. Schmidt, Synlett 2002, 1107. - [40] D. Vadolas, H. P. Germann, S. Thakur, W. Keller, E. Heidemann, Int. J. Pept. Protein Res. 1985, 25, 554. - [41] H. Christopher, S. Smiles, J. Chem. Soc. 1911, 2046. - [42] J. C. Sheehan, J. Preston, J. Am. Chem. Soc. 1965, 87, 2492. - [43] J. C. Sheehan, S. L. Ledis, J. Am. Chem. Soc. 1973, 95, 875. - [44] S. Nozaki, I. Muramatsu, Bull. Chem. Soc. Jpn. 1982, 55, 2165. - [45] D. Schwinn, W. Bannwarth, *Helv. Chim. Acta* **2002**, *85*, 255. [46] D. R. Williams, M. G. Fromhold, J. D. Earley, *Org. Lett.* **2001**, *3*, 2721. - [47] S. Takaoka, K. Nakade, Y. Fukuyama, *Tetrahedron Lett.* 2002, 43, 6919. [48] T. Yoshida, N. Matsuura, K. Yamamoto, M. Doi, K. Shimada, T. Morie, S. Kato, *Heterocycles* 1996, 43, 2701. - [49] H. Gilman, J. W. Diehl, J. Org. Chem. 1959, 24, 1914. Received January 10, 2005